1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{array}{\|c\|} \hline \text { Que. } \\ \text { No. } \\ \hline \text { Q. } 1 \\ \hline \end{array}$	Sub. Que.	Model Answer				Marks	Total Marks
$\text { Q. } 1$	a) Ans.	Attempt any FIVE of the following: List four major compounds of cement with their percentage in ordinary Portland cement.				$\begin{gathered} 1 / 2 \\ \text { (each) } \end{gathered}$	(10)
		Sr. No	Name of compound	Formula	\%		
		1	Tricalcium Silicate ($\mathrm{C}_{3} \mathrm{~S}$)	3 CaO SiO 2	54.1		2
		2	Dicalcium Silicate ($\mathrm{C}_{2} \mathrm{~S}$)	2 CaO SiO	16.6		
		3	Tricalcium Aluminate ($\mathrm{C}_{3} \mathrm{~A}$)	$3 \mathrm{CaO} \mathrm{Al} 2_{2} \mathrm{O}_{3}$	10.8		
		4	Tetracalcium Aluminoferrite ($\mathrm{C}_{4} \mathrm{AF}$)	$\begin{aligned} & 4 \mathrm{CaO} \mathrm{Al} \mathrm{I}_{3} \mathrm{O}_{3} \\ & \mathrm{Fe}_{2} \mathrm{O}_{3} \end{aligned}$	9.1		
	b) Ans.	Stat The	four requirement of good agg quirements of good aggregate	egate. e as follows.			
			A good aggregate should be crushing and abrasion strength A good aggregate should b variation. It should be non-reactive reaction. It should be clean i.e. fre impurities. It should be well graded with It should have rough texture for	strong having suffer durable to re pe to avoid from organic minimum voids. better bonding	icient impact, atmospheric ali- aggregate and inorganic	$\begin{gathered} 1 / 2 \\ \text { (each } \\ \text { any } \\ \text { four) } \end{gathered}$	2

| Que.
 No. | Sub.
 Que. | Model Answer | Marks | Total
 Marks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q.1 | g) | Define hydration of cement
 Ans.
 Hydration of cement: It is exothermic chemical reaction takes place
 when water is added to cement, which gives rise cement paste and
 large amount heat is evolved. About 120 cal/gm, heat is evolved. This
 is called as hydration of cement. | $\mathbf{2}$ | $\mathbf{2}$ |

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	d) Ans.	Explain determination of bulking of fine aggregate with neat sketch. Determination of bulking of fine aggregate (sand): 1. Take 100 gm . of given sand sample and fill it in measuring cylinder about one-third of its weight. Take this volume of sand $\mathrm{V}_{1} \mathrm{ml}$. 2. Now add 2% water by weight in sand initially. Shake the cylinder vigoursly using palm at top and bottom to cylinder. Note down the increased volume of sand $\mathrm{V}_{2} \mathrm{ml}$. 3. Calculate $\%$ bulking of sand as $b_{1}=\left(\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / \mathrm{V}_{1}\right] \times 100$ 4. Repeat above steps by adding water at suitable intervals (say 2%) i.e. $4 \%, 6 \%, 8 \%$ etc. and observe increased volumes V_{3}, $\mathrm{V}_{4}, \mathrm{~V}_{5}$ etc. Also calculate corresponding $\%$ bulking as $\mathrm{b}_{2}, \mathrm{~b}_{3}$, $\mathrm{b}_{4} \%$ using above formula. 5. Finally draw the bulking curve as \% water versus \% bulking as shown in fig below. Note down the maximum \% of bulking and corresponding optimum $\%$ of water from it.	3	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
DEGREE \& DIPLOMA
ENGINEERING
Model Answer: Summer- 2019

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	a)	Attempt any THREE of the following:	$\begin{gathered} 1 \\ \text { (each) } \end{gathered}$	(12)
		Suggest the degree of workability in terms of slump for the following: i) Pavements using pavers ii) Canal lining iii) Heavily reinforced sections iv) In-situ piling		
	Ans.	Degree of workability in terms of slump for the following: i) Pavements using pavers: $25-75 \mathrm{~mm}$ ii) Canal lining: 70-80 mm iii) Heavily reinforced sections: $50-100 \mathrm{~mm}$ iv) In-situ piling: $100-150 \mathrm{~mm}$		4
	b)	Explain two causes of each i) Segregation ii) Bleeding of concrete		
	Ans.	Causes of Segregation: 1. Inaccurate water cement ratio. 2. Improper mixing of concrete ingredients. 3. Longer distance transportation. 4. More height of concrete placing.	1 (each any two)	
		Causes of Bleeding of concrete: 1. Inaccurate concrete mix proportion with higher w / c ratio 2. Use of more flaky aggregates. 3. Insufficient mixing of concrete. 4. Lean mix i.e. less cements content. 5. Delay in finishing of freshly placed concrete mix.	$\begin{gathered} 1 \\ (\text { each } \\ \text { any } \\ \text { two) } \end{gathered}$	
	c)	Write the significance of water-cement ratio and its effect on hydration of cement.		
	Ans.	Significance of water-cement ratio: The W/C ratio plays very vital role in concrete mixture. The improper or random selection of W/C ratio leads in various defects in fresh and hardened concrete. If W/C ratio is less (say $w / c=1 / 4=0.25$), then concrete will become harsh and results in honeycombing or porous nature due to poor workability. If w / c ratio is more ((say $\mathrm{w} / \mathrm{c}=5 / 4=1.25$), then concrete undergoes segregation and bleeding. Thus finally concrete shows defects in it.		
		Therefore w/c ratio should be optimum, which depends on grade of concrete and exposure conditions hence w/c ratio should be selected from IS: 456:2000. If w/c ratio is opted out properly as mentioned above, then concrete possess good workability, compressive strength and durability ultimately OUR CENTERS :	2	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	c) d) Ans.	Effect of water-cement ratio on hydration of cement: When w/c ratio is less i.e. less water in concrete mix, then it leads to less availability of water than that of required for complete hydration. It decreases the rate of hydration of cement. When w/c ratio is more i.e. excessive water in concrete, then it results in abundant availability of water for sufficient hydration. But such large water may not give proper binding of aggregates. Explain two factors affecting properties of hardened concrete. Factors affecting properties of hardened concrete: 1. Type and quality of materials used: If type and quality of materials used for concrete i.e. cement, sand, aggregate and water is not as per IS recommendations, then the properties of hardened concrete like strength, durability will affect drastically. Reactive aggregates reduce fire resistance and acidic/alkaline water gives cracks in concrete. Lesser grade of cement reduces strength and durability of hardened concrete. 2. Mix proportion of materials: The badly mix proportion of good quality materials will result in reduced segregation and bleeding, which finally shows reduced workability and strength of concrete. Improper mix i.e. random water cement ratio shows harshness in concrete, which finally results in unfinished surface of hardened concrete. 3. Methods of concreting operations: If the concreting operations like batching, mixing, transportation are not completed in standard manner, then one cannot ensure sufficient strength and durability of concrete in hardened stage. Also lesser compaction results in honeycombing, which shows lack of impermeabilty in concrete. 4. Workmanship: This is another important factor on which all the properties of hardened concrete depend. If the supervisors, labours, masons etc are not working properly, then the bad workmanship result in various defects in hardened concrete in terms of reduced strength, more chances of creep etc. 5. Weather conditions: The atmospheric variation also affects the properties of hardened concrete. The high temperature results in expansion cracks and reduced temperature gives rise to shrinkage cracks. Alternate drying and wetting of concrete in monsoon season may shows creep in concrete. The sudden change in weather conditions reduces strength and durability of hardened concrete.		4

 the graph of generalized relationship between w/c ratio and compressive strength. The selected w/c ratio is checked against the limiting w/e ratio and lower of two is adopted.
3. Selection of water content- The maximum water content per cubic meter of concrete with nominal maximum size of aggregate s finalized in this step. The water content adopted is used for computing cement content in next step.
4. Calculation of cementitous material content - From adopted w/c ratio and selected maximum water content the quantity of cementious materials is calculated. It is checked against the minimum cementitous content for durability requirement ad larger of the two values is adopted as cement content.
5. Calculation of coarse aggregate proportion -The volume of coarse aggregate per unit volume of total aggregate is chosen in this step based on nominal maximum size of aggregate
6. Selection of combination of coarse aggregate fractions- The different sizes viz. $10 \mathrm{~mm}, 20 \mathrm{~mm}, 25 \mathrm{~mm}$ are taken in proportion from grading, confirming in table 2 of IS 383
7. Calculation of fine aggregate proportion- From above steps, absolute volume of all ingredients of concrete the mix proportion is calculated for said mix design of concrete.

Que.
No.
Q. 4

Ans. Effects of cold weather concreting:

1. Due to cold weather, concrete shows reduced rate of hardening, which results delay in removal of formwork.
2. Water added in concrete mix gets frozen quickly, which results in difficulty in mixing showing less workability of concrete.
3. Snow fall during concerting increases the w/c ratio, which may lead to segregation and bleeding in concrete.
4. Ordinary method of curing becomes unsuitable in such humid conditions.
5. Due to freezing and thawing effect, concrete may results in contraction cracks.
6. Due to excessive moisture, lumps get formed in cement bag.
7. During transportation, concrete becomes hard due to ice formation of water added.

Precautions of cold weather concreting:

1. Concrete work should be done during day time or on sunny days.
2. Warm water should be added for mixing of ingrédients of concrete.
3. Before placing of concrete, the formed ice, snow or frost should be removed from formwork.
4. The accelerating admixtures should be used to increase hardening of
5. A protective cover should be used over casted concrete to avoid cold winds and snow fall.
6. Aggregates (fine and coarse) should be heated before its use.

Effects of hot weather concreting:

1. Due to hot weather, concrete shows rapid rate of hardening, which results difficulty in transportation of concrete.
2. Water from concrete mix gets evaporated fastly, which results on w/c ratio and less workability of concrete.
3. Water may get absorbed by formwork, aggregate or ground due to excessive heat.
4. More shrinkage cracks get developed on concrete surface due to incomplete hydration with less water in concrete. Hence, early finishing becomes more essential.
5. Continuous curing is required to keep humidity and to avoid further development of cracks.
6. Air entrained in concrete may get expelled due to temperature, hence workability may reduce additionally.

Precautions of hot weather concreting:

1. During hot weather, transportation of concrete should be done quickly, without delay to avoid hardening of concrete.
2. Concrete should be covered with polythene before and after concreting work to minimize defects.
3. Before placing, water should be sprinkled on ground and formwork to avoid water absorption from concrete mix.
4. Concreting work should be done during night time only.
5. Retarding admixtures should be used to reduce rate of setting.

Que. No.	Sub. Que.	Model Answer
Q. 4	e)	Define the following special types of concretes with i) Vacuum concrete ii) Fiber reinforced concrete iii) High performance concrete iv) Self-compacting concrete
	Ans.	The uses of special types of concretes are as follows.

i) Vacuum concrete: It is the concrete in which entrained air and excess water form concrete mix is taken out from vacuum pump, called vacuum concrete.
Use:
i. Industrial floor sheds.
ii. Hydro power plants
iii. Bridges, ports and harbours
iv. Cooling towers
ii) Fiber reinforced concrete: The concrete made up of using one or more type of fibers in the concrete mix, is known as fiber reinforced concrete.
Use:
i.Construction of air field, road pavements, industrial floorings, bridge decks, etc.
ii.Useful in canal lining, refractory lining.

Use:

Use:
iii.Useful in fabrication of precast products like pipes, boats, beams, staircase steps, wall panels ete.
iv.Applicable in construction of explosive resistive structures.
iii) High performance concrete: The high performance concrete is a concrete in which certain characteristics are developed for a particular application and environment, so that it will give excellent performance in the structure to be built, is called as High performance concrete.
i. Construction of special structures like atomic power stations, satellite launching station, heavy duty runway, etc.
ii. Mass concrete structures like dams, long span bridges, etc.
iv) Self-compacting concrete: It is the concrete which settle down under its own weight so that it does not require any type of external vibration for its compaction.
i. Thin walled structures like pardi, retaining wall etc.
ii. Highly reinforced sections i.e. large bridge and machine foundations
iii. Pumped concrete for floors and slabs.
iv. Pre-stressed concrete

Que.
No.
Q. 5

a) Draw a neat and labelled sketch of rebound hammer and write two limitations of it.
Ans. Labelled sketch of rebound hammer:

Limitations of Rebound hammer test:

1. Rebound of hammer may get affected due to roughness of concrete surface.
2. The age of concrete also varies with rebound number i.e. cured concrete gives more rebound no. than fresh one.
3. Surface moisture of concrete may give inaccurate rebound number.
4. Type of concrete ingredients i.e. cement, coarse aggregate may affect rebound number.
5. Size and shape of specimen also affect hammer impact.
b) Write one suitability of each different six non-destructive tests.

Ans. The suitability of various non-destructive tests are as follows.

1. Surface hardness test- To estimate the concrete strength using Williams testing pistol and impact hammer.
2. Rebound hammer test- To estimate the strength of concrete and comparative investigations.
3. Ultrasonic pulse velocity test- To determine homogeneity of concrete mass and strength of concrete.
4. Penetration and pullout technique- To determine penetration and pullout resistance of concrete mass and hence to determine concrete strength.
5. Dynamic or vibration test- To evaluate durability and uniformity of concrete and to estimate its strength and elastic properties.
6. Radioactive method-To measure density and thickness of concrete using X and gamma ray
7. Nuclear method- To determine moisture and cement content.
8. Magnetic method- To determine cover of reinforcement in concrete mass.
9. Electrical method- To measure moisture content and thickness of concrete.
10. Acoustic emission techniques- To study the initiation and growth of cracks in concrete.

Que. No.	Sub. Que.	
Q.6		Attempt any TWO of the a) Ans.
Explain the significance concrete. Significance of Batching:		

2. There are more chances of wastage of concrete to produce good quality of concrete.
3. Un-batched materials results in various defects in concrete in later stages.

Significance of Compaction:

1. If compaction is not done then the concrete mass shows voids in it, resulting porous concrete.
2. Insufficient compaction results in honeycombing of concrete, hence it is important to get dense concrete
3. Compaction is significant to achieve desired strength and to ensure enhanced durability of concrete structure.
Significance of Curing:
4. Curing plays vital role in completing the hydration of cement hence to achieve characteristic strength of concrete.
5. Curing is essential to gain early and ultimate strength of concrete.
6. Curing is necessary to make the concrete impermeable in nature its hardened state.
b) Draw a neat and labelled sketches of following:
i) Plan of column formwork.
ii) Expansion joint with load transfer device.

Ans.
i) Plan of column formwork.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

